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Two generalizations of the spherical harmonic transforms are provided. First, they
are generalized to an arbitrary distribution of latitudinal po#tg his unifies trans-
forms for Gaussian and equally spaced distributions and provides transforms for
other distributions commonly used to model geophysical phenomena. The discrete
associated Legendre functioﬁﬁ‘(@i) are shown to be orthogonal, to within roundoff
error, with respect to a weighted inner product, thus providing the forward transform
to spectral space. Second, the representation of the transforms is also generalized to
rotations of the discrete basis ség‘(ei). A discrete function basis is defined that
provides an alternative tB_ﬂ"(Gi ). On a grid withN latitudes, the new basis requires
O(N?) memory compared to the usu@(N?). The resulting transforms differ in
spectral space but provide identical results for certain applications. For example,
a forward transform followed immediately by a backward transform projects the
original discrete function in a manner identical to the existing transforms. Namely,
they both project the original function onto the same smooth least squares approx-
imation without the high frequencies induced by the closeness of the points in the
neighborhood of the poles. Finally, a faster projection is developed based on the new
transforms. (© 2000 Academic Press

1. INTRODUCTION

Harmonic transforms are used on the sphere in the same way that Fourier transf
are used on a rectangle in Cartesian coordinates. On the rectangle, Fourier trans
are used in both the andy directions. On the sphere, however, Fourier transforms a
used in the longitudinal direction, while Legendre transforms are used in the latitudi
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direction. On a grid withN latitudinal points and at least\2— 2 longitudinal points, the
complete set of spectral coefficients are computed My-22 discrete forward Legendre
transforms, each corresponding to a rectangular matrix With m rows andN columns,
wherem = 0, ..., N — 1 are the longitudinal wave numbers. With the exceptiomef 0
andN — 1, two transforms are required for each

Except where noted, itis assumed that a complete set of spectral coefficients is comp
which is often called the “linear grid.” Computational economies are evident for truncatic
thatrequire less than a complete set. The backward transform, from spectral to Fourier s
also consists of B — 2 matrices but withN rows andN — m columns. The forward and
backward transforms between spectral and Fourier space are called the Legendre an
and synthesis, respectively. The combined transforms, namely, a forward plus a back
transform, define a projection operator more commonly referred to as the “filter” [5, 11

The Legendre transforms are not one-to-one because the number of spectral coeffic
is about half the number of points on the sphere and consequently, unlike the Fou
transform on a rectangle, a forward followed by a backward transform (projection) does
necessarily reconstruct the original data. Although initially somewhat disconcerting, t
property of the combined transforms has been found to be quite useful for time-depen
models of geophysical processes. In particular, a weighted least-squares approximati
the original data is obtained [9] that removes the high frequencies and the resulting t
step restriction that are induced by the closeness of the points in the neighborhood o
poles. Projecting the dependent variables in this manner permits the use of a larger
step based on the spacing of the equatorial grid points [5, 7].

This approach also requires fewer harmonic transforms since additional harmonic tr
forms are not needed to evaluate spatial derivatives. Rather, the derivatives can be eval
using fast methods based on double Fourier series with model results that are identical t
traditional spherical harmonic spectral method [7]. Or, if spectral accuracy can be rela
somewhat, the derivatives can be computed by yet faster methods based on high-order
differences. Although the projection approach provides increased speed, the time req
by the projection itself remain®(N?®) and has therefore become the focus of efforts t
further speed the computations. A guide to the pseudospectral method itself is given in
which includes an application to numerical weather prediction.

The literature contains fast projection methods based on the multipole method [2, 5,
Although these methods have the potential t@g&? log N), in practice they perform like
efficientO(N?®) methods, at least for current and expected valués[8. Here we proceed
in the latter direction with the development of a fagBiN?®) projection that can halve the
number of computations for the Legendre transforms. This variant is also memory-effic
with anO(N?) memory requirement, compared to the existddN ) requirement. The goal
of an O(N2log N) harmonic spectral method remains elusive; however, the “projectio
method provides a new avenue of research. Perhaps the development of a fast proje
will prove to be easier than the development of a fast harmonic transform.

The Legendre transforms consistimatrices, which, as currently posed, require mem
ory proportional toN3. This can be viewed as excessive when compared t@®tié?)
memory requirement of a discrete function on an equiangular grid. Therefore, often
choice is to compute the elements of these matrices at run time rather than precomput
store for repeated use later. This seems reasonable since the induced computational
head is about 25%, which may be tolerated in exchange for the sizeable memory reduc
Interestingly, accuracy is not necessarily reduced by this choice. From an accuracy f
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of view it would seem preferable to precompute the transform matrices in 64-bit precis
and store them in full 32-bit precision for subsequent use. However, current methods
computing these matrices at run time are extremely accurate [10]. Nevertheless, if
computation is preferred, the reduc@€iN?) memory requirement further motivates this
approach.

The harmonic transforms are generalized to arbitariypy Section 2. This unifies the
harmonic transforms for Gaussian and equally spaced grids. It also provides new transf
for other common distributions such as equally spaced without pole points, which is cl
to a Guassian distribution, or a shifted equally spaced latitudinal grid that also excludes
pole points. Indeed, the work formally extends to an arbitrary latitudinal distribution &
with grid-specific considerations that are discussed in Appendix A.2. The resulting disc
associated Legendre functions are shown to be orthogonal with respect to a weighted
product, which thereby provides the forward transform into spectral space.

A variant of the Legendre transforms based on functiQd¢) and Q1(9) that are
linear combinations (rotations) of the associated Legendre funtﬁ@(@) is developed in
Section 3. The resulting Legendre-type transforms differ in spectral space but are ider
in physical space, where they give the same results as the usual Legendre transform
example, a projection based on Qgunctions gives the same results (to roundoff) as on
based on thden”(e). The advantage of the former is a significant reduction in memo
from O(N?) to O(N?). If used to approximate the derivatives of a discrete function c
the sphere, this approach will give the same results as the traditional approach and m
preferable for certain applications where the spectral coefficients can be made invisib
the user.

A faster projection that can reduce the computation required by the Legendre transfc
by as much as 50% is developed in Section 4. This would at first seem obvious by ¢
ply combining the forward and backward matrices. However, because these matrice:
rectangular, such a combination far> N /2 would actually increase the amount of compu:
tation. We take an alternate approach in which the projection is represented in terms ¢
orthogonal complement of the discrete Legendre functions, which becomes the prefe
approach fom < N/2.

The accuracy of projections based on the traditional and generalized harmonic tr
forms is compared in Section 5. Both traditional and generalized harmonic transfo
are developed for five latitudinal point distributions. Traditional projections are col
pared to projections based @ N?) representations of the generalized discrete Legend
transforms and their orthogonal complements. A summary of results is given in Sectio
Computational methods, theorem proofs, and relevant formulae are provided in
Appendix.

2. GENERALIZED DISCRETE HARMONIC TRANSFORMS

Given the discrete functiorf; j, defined at latitudes;,i =1,..., N, and longitudes
0j, j=1,...,2N — 2, the forward harmonic transform or harmonic analysis consists
determining coefficienta, , andby, » such thatf; ; can be synthesized by

N-1 n

fi; = Z Z PT(6h)(@mn COSMA; + b n SINM@;). (2.1)

n=0 m=0
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The analysis consists of two phases. First we use the fast Fourier transform (FFT) to conr

2N-2 1 2N-2
an(0h) = 51— ; fijcosmp; and bm(6) = N3 ; fi; sinmg;. (2.2)

If the 6; are Gaussian distributed then the desired coefficients are given in the second p
by

N N
amn =Y wian(®)PY®) and bmn =Y wibn@)PT®). (2.3)
i=1 i=1

where thew; are the Gaussian weights. Oncedhg, andby, , are determined, the harmonic
synthesis or backward transform is given by (2.1). Here we focus on the computation
intensive transforms (2.3) between Fourier and harmonic spaces because the Fourier
forms (2.2) are fast and not relevant to the work presented here.

As mentioned in the Introduction, the forward harmonic transform followed immediate
by a backward transform will not, in general, reconstruct the discrete function but rat
will provide a least-squares approximationfiq that is quite useful, for the reasons statec
earlier. We begin with a study of this combination, called the Legendre projection, tl
will later yield the generalized harmonic transforms, which include both Gauss and equ
spaced grids as well as other common grids used in computational geophysics. Indee
work generalizes to any latitudinal distribution with considerations that are grid-spec
and discussed later.

The projection occurs in the Legendre transforms between Fourier and harmonic si
The computation of botay, , andby, » in (2.3) is by application of the matrix operaf@f W,
whereW is anN x N diagonal matrix of Gaussian weights andPp, is theN x (N —m)
matrix

PM@1) --- PR_y(60)
PM6N) --- PR_1(6n)

whose entrie§nm(0i) are tabulations of the normalized associated Legendre functions

PI(0) = X2 — 1" x=sing. (2.5)

1 [2n4+1(n—m)! 1/2C p
2n! 2 (n+m! dxn+m
The Legendre projection combines the analysis and synthesis,

Fin = PmPTW, (2.6)

into a single N x N matrix for each longitudinal wave numben. The discrete
Legendre functions are orthogonal with respect to Gaussian quadrature. PRAWI®,, =

I N—mxN—m. Then, because a matrix commutes with its inveIqué’gW = I nxn and there-
fore

Winxn = (PoPE)_l, (2.7)
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and, from (2.6)Fo = Inxn. FOr exposition the dimensions of a matrix may be include
with its definition.

Unless otherwise noted, weighted orthogonality is assumed throughbdefines a
weighted inner producu, v)w = (u” Wv) that is fundamental to the generalized harmoni
transforms presented here. Of course itis possible to select a distribution of points thaty
asingular or near-singular matrix on the right side of (2.7). The management of this potel
problem is discussed in Appendix A.2.

Consider now the elements B§P] but for an arbitrary distribution of latitudes,

z
=

(PoPg); ; = D PRG)PR)). (2.8)
ki

Il
o

A simple proof of the Christoffel-Darboux formula is given in Appendix A.3, which pro
vides the following alternate representation of the elements:

ppry N PREIPR @) — PR 4O PRE)
(PoPo )i = Jane=1 sin; — sing,

The diagonal elements can be computed either from (2.8) or by applyiogit&l’s rule to
(2.9). Using the latter approach,

(2.9)

N

(PoPo)ss = Janr—T oo

[P% 160) 55 d P° @) — P§, )55 d P% 60| . (2.10)

From (2.9) we are motivated to selécts the zeros d?% (6)) because the resulting matrix
is then diagonal. The resultiy are known as the Gaussian distribution &d); ; are the
Gaussian weights obtained from (2.10) as

(W)ii = V4N2 — 1 cost; /N P, l(9.) d P%(@.) (2.11)

The Gaussian point can be computed accurately and efficiently as the eigenvalues c
symmetric tridiagonal matrix as described in [10]. The weights can be computed from (:
or (2.9) or by a third method also described in [10] and implemented in subrgiéein
SPHEREPACK [1], at (A.5.1).SPHEREPACK contains programs for the harmonic transform:
on Gaussian and equally spaced grids as well as a number of other harmonic transf
and related computations that can assist model development.

Although the spherical harmonics are not polynomials for ogdhe product of two
such harmonics is a polynomial for which Gauss quadrature is exact. Therefore, fo
m < N — 1 the spherical harmonid, are weighted orthogonal with respect to the Gaus
weights. However, unlike the Gaussian distribution, other distributions require two wei
matrices, namelyW, = (PoPJ)~* andW; = (P;P])~1, for m even and odd, respectively.
The tilde notation is used becau®emust be augmented to an independent s&t véctors
before inversion is possible. Indeed, for an arbitrary distributRyrmnay also be singular
as discussed in Appendix A.2.

THEOREML1. LetPpbethe Nx (N —m) matrix defined by2.4) and letW, (1 =0, 1) be
the N x N matrices defined in the paragraph preceeding Theorgtheh for all0 < m <
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N — 1 and any distributiors; such that the corresponding weight matriddg and W,
exist the associated Legendre functidhg are weighted orthogonal. That,is

0, meven

p-r;W| Pm=IlN-mxN-m | = {1, m odd

(2.12)

Most of the proof is in Appendix A.4, where it is shown that the four-point recurrenc
for the associated Legendre functions corresponds to an orthogonal transform. The
Pmi1=Pm_1Bm, whereBy = (X;1¥Ym)Tis (N —m+1) x (N—-m— 1) andB/Bn, =
[(N—m—D)x(N—m—1)- Xm andYn are defined in Appendix A.4 at (A.4.3). L&l be the
N x (N —m) matrixBj;1Bj,3- - - Bm_1. ThenMMm = | (N_m)x(N—m) andPy = PIM .
Theorem 1 follows because, by constructiBnis weighted orthogonal with respect\id .

The forward transform to spectral space, or the Legendre analysis, is then immedie
evident as

zh=PIw,, (2.13)

wherel is 0 (1) if mis even (odd). The backward transform or Legendre synthesis is simj
Pn. Like (2.6), the projection combines the two and from (2.12)

F2 = Fm, (2.14)

which demonstrates th&t, is a projection operator onto the discrete associated Legenc
functionsPy,. This result is the key to the stability of the spectral transform method a
remains an attribute of the generalized projections that are developed here.

For arbitraryd;, W is not diagonal; however, when it is combined WRH as in (2.13),
the compute time for the forward transform is the same as that required for a Gaus
distribution of points. For equally spacéd the resulting Legendre analysis is identical tc
that given in [6, 9].

If the matrices are stored, the harmonic transforms require double the memory require
transforms on a Gaussian grid, because BgtandZ ,, must be stored. However, if they are
computed at run time, the memory requirements for both the Gaussian and equally sp
grids areO(N?) rather tharO(N?®). This is often the preferred approach since the elemen
in both matrices can be computed efficiently with three multiplications and two additiol
as described in Appendix A.4 and implementedSFHEREPACK (A.5.1). However, this
computation can be eliminated, while at the same time retaiBifig?) storage, by using
a variant of the Legendre transforms that is developed in the next section.

3. AVARIANT OF THE LEGENDRE TRANSFORMS WITH O(N?) REPRESENTATION

We begin with the construction of the orthogonal compleme®a#/. That is, for each
mwe will determinem orthogonal vectorg such thaPT Wq = 0. The memory requirement
for the complete set i©(N?) compared withO(N?®) for Py,. In what follows, a discrete
function will be called an even (odd) vector if it is even (odd) about the equéter0).
For a distribution of latitudinal points that is symmetric about the equator, the even (o
classification can be used to halve the computational time as demonstrated below.
development will be presented by example for the ddse8 with multiple references to
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TABLE |
Bases for the Orthogonal Complement of BW on an
Eight-Point Latitudinal Distribution

P p? o p3 [ o P o
a P} P p3 [ p3 P P
a5 a? p3 p3 [ p3 p3 p3
a4 o a3 p3 P p3 p: p3
a5 as a5 o pi pé pé p3
G a; a3 a3 a0 P P p3
qa a a5 o o ae P ps
a a a3 a3 a o % p;

Table I. The orthogonal complement is spanned by the discrete funcffcarsdq? in the
last two rows of Table I. They are computed in the following sequence using the Gra
Schmidt orthogonalization with respect to the weighted inner pro@ueby. The vectors
p are the discrete Legendre functions or the columridpflefined in (2.4).

1. In the second row of Table g3 is uniquely determined as an odd vector that i
orthogonal tgp3, p2, andp}. It is implicitly orthogonal to the remaining? forn=1, 3, 5,
and 7 because they are even vectors. It is also orthogonal to the remgJrim@able | with
oddm because they are linear combinationpbhs discussed in Appendix A.4. Therefore
g3 can also be selected as a member of the orthogonal complem@httdor m= 3, 5,
and 7, where it appears in the corresponding rows of the first column in Table I.

2. In the third row,q3 is computed as orthogonal i3 for n=2, 4, and 6. Alsog? is
computed as orthogonal i for n=23,5, and 7. For the reason stated in 1 above, bot
are also orthogonal to the remainipj for m=4 and 6 where they appear in the first two
columns of Table I.

3. This process continues down Table | with two new vectors being added to each |
For example, in the fifth row the vectog§ andq$ are added but with the requirement tha
they are orthogonal to all other vectors in the row with the same parity. Thergfomast
be computed not only as orthogonalghandpg but also as orthogonal tf.

This completes the construction of the orthogonal complement, from which a varian
the Legendre functions can be developed that requires@aN?) memory. The variant is
determined from the last two rows in Table I, which provide both the analysis and synth
as presented in the following two theorems.

First defineq? = pg, g% =pS, andg? = pi. Next assume gener&l and define the fol-
lowing matrices that are formed from vectors in the last two rows of Table I,

Q!’n = I:qlm e qlN—l} Nx(N—m)’ (31)

wherel = 0 (1) if mis even (odd).
THEOREMZ2. There exists aiiN —m) x (N —m) |, orthonormal matrixH'm such that
the Legendre synthes®, in (2.4) is given byP, = QL H! .

The proof, together with the definition ef, is given in Appendix A.1.
BecauséH! )TH! =1 n_m)xn_m) We have the corollary th&', = P,(H! )T and there-
fore we can now interpret the discrete functiohss continuously differentiable functions
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Q! (9). Like the associated Legendre functions, @{g6) can be differentiated, integrated,
or interpolated in any manner that may be required by an application.
Next letr ), be the rows ofQ})~* and define the lastl — m rows by

Rn=[ry - .4 Nx (N’ (3.2)
THEOREM3. The Legendre analys{®.13) is given byz! )T = (H|)T(RI)T.

The proof, together with the definition éf!_, is given in Appendix A.1. For alin, H
requiresO(N?%) memory; however, it may not be relevant for applications that do not requi
explicit calculation of the spectral coefficients. For example, the projeéiipim (2.6),
which consists of an analysis followed immediately by a synthesis, has a representatic
the O(N?) projection

Fn = QL (R, (3:3)

whereQ!, andR! are bothN x (N — m) matrices given by (3.1) and (3.2) respectively.
Althoughm ranges from 0 td\ — 1, they require only RI? locations because they are all
generated fron®] andR!, | = 0, 1, by deletingn columns. BotiQ!, andR!, require N?
locations and hence the projection as well as the Legendre type transforms redgire
locations. This can be halved taking advantage of symmetries.

Next suppose we wish to approximate thderivative of a discrete function defined on
the surface of the sphere. The traditional approach is to first analyze and then synth
but with Py, replaced by its derivativey,,. By combining Theorems 2 and 3 and replacing
Q!, with Ql,, we determine that an approximate latitudinal derivative can be obtained
the application o' (Rl )T. Like the projection, this computation is independenHé.
Q! can be precomputed and stored M%2ocations for subsequent use.

4. AFASTER PROJECTION

In Section 2 we observed thB = y«n, Which considerably facilitates its application
for m=0. However, fom> 0, F, is a full N x N matrix that does not admit an obvious
computational saving. However, the rankgfis N —m, and hence the rank of its orthogonal
complement ism, which can be used to speed its computationnfior N /2. We proceed
now to develop an alternate form Bf,.

THEOREM4. The projectior, has the alternate for, =1y « n — Gm, WhereGy, is
equal to the product of the first m columnsQlf times the first m rows dRy,.

First define the orthogonal complement@f, andR, as

Qu=[0 ~ dnilyn @nd Ry=[rg o ]y (4.0)

Then, from (3.2), (3.3), and by inspection

Insn = Fo=Qb(Rb) " = Qi(Rhy)"

+Q, (R, 4.2)
or
Fm=1—Gn, (4.3)

whereGy, = Q' (R )T, which completes the proof.
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This provides an alternate way of applying the projectigq) namely, in terms of its
orthogonal complement. For example, consider the casel, for whichF; is the product
of Q; andR], which are almost full matrices. Howev@ is the outer product of the vectors
g3 andr}. Assume the latter is precomputed, then for arbitbaryl — G1)x requires N
flops compared to92 flops for computing=; x. The alternatgl — G,,)x is more efficient
for m< N/2 andFx is preferred foom> N/2. This alternate approach is also slightly
more accurate, which can be determined by comparing Tables Il and 11l in the next sect

This alternative provides a computational savings of 50% if all harmonics are incluc
in the projection. The savings is less when fewer harmonics are included. For exampl
two-thirds of the harmonics are included, then the dimension of the orthogonal complen
increases with crossover atat= N /6. The overall savings when using the two-thirds rule
is about 12.5%. The two-thirds rule can be implemented either by truncating the disc
functions inPy, or by enlarging its orthogonal complement—as an example of the latter,
including the vectors in the last two columns of Table I.

5. COMPUTATIONAL EXPERIMENTS

The developments of the previous sections have been implemented in a single prog
which accepts any latitudinal distributieh and computes (a) the weight matridas as
describedin Appendix A.3, (b) the orthogonal complen@pt(c) the weight matrix (A.1.9)
in terms of the memory efficient alternative Legendre functignand (d) projections based
on both the traditional Legendre functiop® and alternatives,. The accuracy of these
projections is listed in Tables Il and Il for five different latitudinal distributions.

Table Il contains the maximum error of the projection based on the applicatRuRIfW
to 20 random vectors. The implementation is sequential with the vector being first multip
by them x N analysis matri®] W followed by theN x m synthesis matrify,. Accuracy is
computed as the maximum difference between the calculations in 32- and 64-bit preci:

Table Il contains the accuracy of the same projection based on the memory-effic
alternatives to the discrete Legendre functions and their orthogonal complements.
is, form < N/2, the projection is computed from (4.3), and far> N/2, the projection
is computed from (3.3). In all cases the elements of the matrices are computed in 6
precision but stored in 32-bit precision before application to the same random vectors |
in Table Il. The accuracy of the alternate approach, as given in Table Ill is computed a
maximum difference from the traditional approach in 64-bit precision. The accuracy of
alternate approach appears slightly better.

TABLE Il
Error in Computing the Legendre Projection Based on Traditional Legendre
Functions @' for Five Different N-Point Latitudinal Distributions

Distribution N =32 N =64 N =128
Equally spaced with poles B x 107 8.34x 1077 2.00x 10°®
Equally spaced without poles FBx 107 8.34x 1077 1.31x 10
Shifted equally spaced & x 1077 1.07x 10 1.31x10°
Gauss distributed A7x 107 5.96x 1077 1.54x 1078

Random distribution B4x 107 1.25x 10°¢ 1.88x 10°®
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TABLE IlI
Error in Computing the Legendre Projection Based on the Alternative Legendre
Functions of and ¢} for Five Different N-Point Latitudinal Distributions

Distribution N =32 N =64 N =128
Equally spaced with poles B7x 1077 4.77x 1077 6.56x 1077
Equally spaced without poles EBx 107 6.56x 1077 1.01x 10
Shifted equally spaced &7 x 1077 5.36x 1077 7.15x 1077
Gauss distributed .98x 1077 5.07x 1077 7.15x 1077
Random distribution 37x107 5.36x 1077 7.74%x 1077

For each point distribution, a discrete harmonic analysis and synthesis were determ
with characteristics identical to the traditional Gaussian or equally spaced transforms. -
is, in each case the discrete functi@fsor g, were orthonormal under the computed weigh
function and, defined a projection operator to machine roundoff error. The five differe
latitudinal distributions are listed below.

1. An equally spaced distribution of points that includes the pole points. Thét4s,
7/2— (G — /(N —1),fori =1,..., N. The resulting transforms are identical to the
existing transforms in [6, 9].

2. An equally spaced distribution of points, like that given above but excluding the p
points. Thatis¢; = n/2 —ix/(N + 1), fori =1, ..., N. This distribution is close to the
Gaussian distribution in 4 below.

3. A shifted equally spaced distribution like 1 above but with the first and last points
a distancer/(2N) from the poles. Thati® = 7/2— (i —.5)n /N, fori =1,..., N. The
pole points are not included.

4. A Gauss distribution oN points. The resulting transforms are identical to the tradi
tional transforms based on Gaussian quadrature.

5. Like 1 above, but with a 10% random perturbation of the nonpole points. Here
are not able to take advantage of the parity of the vector functions, which doubles the t
required to compute the orthogonal complemgpt

6. SUMMARY

Here we first summarize the results of the preceding sections

1. The Legendre transforms are generalized to an arbitrary latitudinal distribution
points, thereby unifying the transforms based on Gauss and equally spaced distributic
well as providing new transforms for other grid distributions used to model geophysical [
cesses. The resulting discrete Legendre functions are orthogonal with respect to a wei
inner product and define projection operators.

2. Memory efficient alternative Legendre transforms are developed whose coefficien
spectral space are rotations of the traditional spectral coefficients. These transforms re
O(N?) memory compared to the tradition@( N3) requirement. They provide identical re-
sults for computations that do not require the explicit computation of the traditional spec
coefficients. Examples include the computation of the Legendre projection or latitudi
derivatives.
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3. The Legendre projection consists of a forward transform followed immediately
a backward transform and therefore the spectral coefficients are not explicitly requi
A faster projection is developed based on the alternative Legendre transforms and
orthogonal complement. A computational savings of up to 50% can be realized.

4. The accuracy of projections based on the traditional and alternative discrete Lege
functions are compared in Tables Il and Ill. The projections based on the memory-effic
alternative to the Legendre transforms are slightly more accurate than the traditional pr
tion. Therefore, like the traditional projection, the alternate projection projects any disci
function onto a smooth least-squares approximation in a manner identical to the exis
harmonic projection.

In [7] it was shown that the stability and accuracy of the spectral transform method \
determined by the implicit application of the harmonic projection. That s, it was determir
that spectral transform accuracy and stability can be obtained by projecting the deper
variables only and using (say) double Fourier series to compute spatial derivatives.
resulted in a computational savings, since fewer Legendre transforms are required. It
focused attention on the projection as the most computation-intensive part of the m
dynamics and therefore as having a significant potential to provide additional savings. |
that potential has been realized by doubling its speed, which makes the cost of the proje
comparable to that of a single Legendre transform. In turn, this further increases the spe
the projection method to between double and triple that of the traditional spectral transf
method, while at the same time reducing the memory requirement@aN?) to O(N?).

APPENDIX

Proofs, Formulae, and Computational Methods
A.1. Proofs of Theorems 2 and 3 in Section 3

In this section we prove Theorems 2 and 3 in Section 3 that provide a memory effic
alternative to the traditional Legendre transforms. In particular we derive an orthonor
matrix Hp, that rotates the coefficients in spectral space in such a way that both the resu
analysis and synthesis have @iN?) representation. Alternatively, we define a variant o
the Legendre analysis, with (N?) representation, that computes spectral coefficients th
are a rotation of the coefficients determined by the usual Legendre analysis. The resu
transforms differ in spectral space but are identical in physical space and may therefol
attractive for many applications, including weather and climate modeling, where spec
space can be made invisible to the user. The presentation is by examp\e=f8r it will
be shown that all of the Legendre transforms and projections can be expressed in tert
the last two rows in Table I.

We begin by demonstrating thBjf, as defined in (2.4) and (3.1), is a rotation of

Qi=1[a] a? p¢ Plg.s (A.1.1)
which is located in the next to last row of Table I. To this end we define the matrix

D=[Q} Qg (A.L12)

whereéf{ is defined in (4.1). Therefor® corresponds to the matrix with columns definec
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by the next to last row of Table |. BecauBds weighted orthogonal,

Then, by inspection,

SWARZTRAUBER AND SPOTZ

lgxg = DTWoD = WoDD" = DD" W,

lgxg = 62(62)TW0 + Q?;(QS)TWQ

A similar development for the fifth row of Table 1 yields

loxs = Q3(QF) " Wo + P§(PS) " Wo.

Subtracting (A.1.5) from (A.1.4), we obtain

Q%(Q3)"Wo = P4PF Wo.

(A.1.3)

(A.1.4)

(A.1.5)

(A.1.6)

Recalling that the columns of bo@{ andP, are orthogonal with respect W, we obtain

P, =QJHY and Q§="P4(HY",

(A1.7)

whereH?= (Q)TWPy is I, orthogonal, i.e.(H$) "H =14..4. ThereforeP, can be re-
presented as a rotation of the last four discrete functions in the next to last row

Table I.

The generalization is now clear; for even P, can be represented as a rotation of the
N — mdiscrete functionqﬂ, n=m,..., N.Foroddm, P, can be represented as a rotatior
of theN — mdiscrete functiong}, n=m, ..., N in the last row of Table I. IN is odd the

last two rows must be switched. In general,

Pn = QLHL, where H\ = (QL) WP,

(A.1.8)

wherel is 0 or 1 ifmis even or odd, respectivel, can also be expressed in terms of the
discrete functions,. From (2.7) and (A.1.8),

where for everN

and for oddN

wi=[ah@y)']

Q= [ag
Qs = [a5
0= (a0

0

ql...
ot

NxN

dR_s PNz PN_3]

ON_z N> pﬁiﬂ

"On—3 On-2 pﬁiﬂ

PNZE].

(A.1.9)

(A.1.10)

(A.1.11)

(A1.12)

(A.1.13)
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This completes the proof of Theorem 2. Consider now the following proof of Theoren
beginning with theéD (N?) representations of the Legendre transforms. From (2.13), (A.1.
and (A.1.9) the traditional forward transform or Legendre analysis is given by

(2" = PIwi = (Hi) " (@) [(@)] (@)™ (A1.14)
(Zlm)T = (Hlm)T[O |](N—m)xN(Q|o)71, (A.1.15)

whereOisan (N —m) x (N — m) matrix with zero entries. Then, recalling Definition (3.2),
we obtain the desired result,

zh=(H) (R, (A.1.16)
which completes the proof of Theorem 3.

A.2. Computing the Weight Matrix W

The weight matrixW in (2.7) is diagonal for a Gaussian distribution defined as tf
zZeros ofl5’,I,‘ (6;) =0. From (A.3.1) this implies tha = sing; must be an eigenvalue of the
symmetric tridiagonal matrixof;’, 0, e’ 1], n=m, ..., N — 1. Then, given the Gaussian
pointsé;, the weights can be computed directly from (2.7) or (2.11) or by a third meth
described in [10] and implemented in subroutgagd in SPHEREPACK, which is available
directly on the World Wide Web. Programs are also included for transforms on an equ
spaced grid.

For equally spaced; (including the poles) two weight matrices are required; namel
W, for evenm andW; for oddm. Wyt = PoP§ has full rank. First compute the] = QR
decomposition wher@ is orthogonal andR is upper triangular. TheW,= (RT)"'R™1.
The QR decomposition can be computed usEIEPACK, available from Netlib. However,
Wt =P;P] hasrankN — 2 becausey, , is linearly dependent on the remainip). First
definep?! with lengthN — 2 asp? but without its first and last zero components. Then defin
Pi=[p!-- PL_,). ThenWy = (P;P])~L. In this manneW; is defined on the latitudinal
grid minus the points at the pole. It can be extended to the poles by giving each the we
of 1.

For the general distribution of latitudinal points, the “extent” of the linear independer
of thep!, (I =0, 1) is unknown. Consequent¥/, = (P,Pl)~! may not exist, as was the case
for W, above. The goal here is to determine the number of indepeptjeartd the extent
to which they are independent so that an informed decision can be made about the nu
of p!, to retain or, when possible, redistributifg

To deal effectively with these considerations we choose to use the singular value dec
position (SVD). The subroutinésvdc in LINPACK is available from Netlib and provides
matricesU, S, andV such that

P = Unoc N SIN-1)x (N V (N1 (N1 (A.2.1)

whereUTU = I (y_1)x -1y, VTV =l (n_1)x(N-1), andSis a diagonal matrix with positive or
zero singular values ;.



226 SWARZTRAUBER AND SPOTZ

At this point, the number of strongly independ@ht(sayN’) can be determined by the
number of largest singular values. This is somewhat subjective but usually easy to deter
because the singular values will generally attenuate smoothly until a sudden drdy-off
can then be chosen to include only the larger singular values. Where optisrmahy be
increased by moving or adding latitudinal points.

Next defineP| = [P'O e P'N,fl] and compute its singular value decomposition,

Pl = UNonrShren Visen - (A2.2)

Now expandJ’ to a squaré& orthonormal matrixJ, by adding vectors using Gram—Schmidt
orthogonalization. Also change zero singular values te 1. Finally, theN x N weight
matrices are given by

w, = 0,520 (A.2.3)

The resulting weight matrices are nonsingular and therefore define aweighteqiménr&
uTWu. Also, from (A.2.2) and (A.2.3), it can be verified tHR{f W P{ = I (n/_1yx(n/—1)-

We close this appendix with the following observationPl=USVT then the weight
matrix isW = US~2UT, which can be quite ill conditioned. However, the analysis matri
Z=VS U7 is better conditioned and the condition of the projection mafrix UUT
is best possible and independent of the condition of either W. Therefore, in theory,
the projection may be well conditioned even if the weight and analysis matrices are
conditioned. Although it may be possible to formulate the harmonic projection in the
terms, it is not clear at the time of this writing whether 8¢N?) memory requirement
can be retained. Furthermore, a reformulation may not be necessary because the num
experiments in Section 5 demonstrate that @@ ?) formulation is already somewhat
more accurate than the traditional formulation. This topic is the focus of current resear

A.3. The Christoffel-Darboux Formula

Here we follow the proof in Hildebrand [4] with application to the associated Legend
functions. We begin with the well-known three-term recursion formula,

- — - (n—my(n+m)y Y2
Xan = Olrr]n an71 + Olrr:Lanerl, Where Olrr]n = [m (A31)
We wish to determine a closed form of
N-1 o .
S(x,y) = > PROOPR(Y). (A.3.2)
k=m
From (A.3.1),
N-1 . . -
XS(X, y) = [ PRLL(X) + o 1 PR (O] PR(Y) (A.3.3)
k=m
and
N-1 _ _
ySX, y) = Y PR [ PRL(Y) + o1 PR (W) (A3.4)

P
I

m
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Most of the terms cancel in the difference of (A.3.3) and (A.3.4) and we obtain the desi
result,

N-—-1
X=y) Y PROOPR(Y) = ef[PROOPR_1(y) — PRLOOPR(Y)].  (A3.5)
k=m

A.4. Orthogonal Four-Term Recurrence Transform

The discrete functiong® andq? that provide the memory-efficient alternativetp are
developed in three steps in Section 3, prior to Table I. A key factor in facilitating their dev
opmentisthatthe spf**!is alinear combination of the" 1. This is provided by the follow-
ing four-term recurrence. If we defirgg = [n(n + 1)]%2 andb, =[(2n + 3)/(2n — 1)]*/3,
then the normalized version of (5.14) in [10] is

anfll = ar;}erl(bnan-&-m—lpnm:ll - an—m+1pnmJ:11 + bnan—m—lpnmjll)- (A.4.1)
This recurrence relation is also quite stable and provides an accurate method for comp
the pM starting withp® andp?. An accurate method for computing the latter is also give
in [10]. The rows ofZ, also satisfy (A.4.1), which is initialized by the rows 2§ andZ 1,
which can be computed by (2.13) or the formulas in [10]. The recurrence (A.4.1) requ
eight flops for each component; however, if the coefficients are precomputed and stor
two-dimensional arrays, only five flops are required.

The stability of (A.4.1) results from the orthogonality of the recurrence relation. That
the transform fronp™-* to p™+ corresponds to an orthogonal transform. In addition, th
proof of (2.12) in Theorem 1 also depends heavily on its orthogonality, which we proce
now to prove. Fom=1,..., N —1, Eqg. (A.4.1) can be written in matrix form,

Xmp™?! = Ymp™t or p™?! =X tYmp™t, (A4.2)

where for arbitraryd, pM"=[P™(©®)--- PY ;(®)]T. Xmis an(N—m—1) x (N—m—1)
matrix with element; ; andYny, is an N —m— 1) x (N — m+ 1) matrix with elements
Yi.j,» where

omi j=i Prmyi—1@myi—2, | =1
Xij =19 —bmyic18-2, j=i—-2 and yj=1< —a, j=i+2 (A.4.3)
0, otherwise 0, otherwise

The goal is now to show thaK,lYn is orthogonal or thatl (n_m_1)xN-m-1) =
XY m XY m) T = XY mY L XD T, Equivalently we will show that

YV I (X)) = X, (A.4.4)

Let X;;! have elements; ;. Because of its simple two-diagonal form (diagonal an
subdiagonal at a distance of 2 from the diagonal) the elements can be given recursive

/%, j=i
&ij= _)(;725’2’ j <i,(, j) same parity (A.4.5)
0, otherwise

X Lis a “checkerboard” lower triangular matrix.



228 SWARZTRAUBER AND SPOTZ

Now defineEy =YY, which is symmetric pentadiagonal with zero sub- and supe
diagonal. LeE, have elements ;; then

ViiD?+ (Wis2)?, j =1

Viir2Yitzit2, j=i+2
j = L A.4.6
& ViiYi-2.i, j=i-2 ( )
0, otherwise

Next definef(m = Em(X;,l)T with elements; ;. By inspection)?m is also a “checkerboard”
matrix with zeros below the subdiagonal located at distance 2 from the diagonal.

To prove (A.4.4),>A(m must be shown to equ,,. To this end we devote the rest of this
section to three separate cases.

First Case: The Subdiagonal From the definition oK m, (A.4.5), and (A.4.6),
Xit2i = €42i&ii = Yit2i+2Yiit2/Xii
= —bmyi+18m+idi+2/3m+i = —DPmii+18i12 = Xiy2,i- (A.4.7)

Second Case: The Diagonal.

o €., i <2
A PR - A48
N {Q,izéi,iz-i-a,iéi,i i > 2 ( )

We prove only the more complicated case 2. From (A.4.5), (A.4.6), and (A.4.8),

- 1
Xiji = —— [()/i,i)2 + Viit2)? = Vi Vie2i Xii—2& —2i-2], (A.4.9)
1,1
1 Xii—
= {(M,i)2+(m,i+z)2—m,iyiz,i L2, (A.4.10)
i Xi—2i-2
then from (A.4.3)
N 1
S = i1 (@i 2 — %) + 7). (A.4.11)
2m-+i
Finally, using the definitions ad, andb, prior to (A.4.1)
2m+i@m+i+1) a3 ..
ii = ( ( = 2 _ Dm+i = Xij- (A.4.12)

Om+i Aom+i

The proof for the subcase <2 proceeds in a similar manner using_,=
[( —2( —D]¥?=0.

Third Case: Above the Diagonallf j >i and have the same parity, then

i&i +6&iv2fjite i<2
)A(i’j _ {a,lsj,l a,|+251,|+2 (A.4.13)

€.i-28i—2+8i&ji, +68 122 1 >2

We again consider only the more complicated case. From the recursive definition (A.4

Xj,j—2 Xj—2,j—4 Xiiai (—1)0-D/2

i =

(A.4.14)
Xj,j Xj-2,j-2 Xit2,i+2 Xi.i
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Substituting into (A.4.13)

o Xit2i Xi-2 2 27 Xi42i
i, ] §1,|+2 {yuyu 2,i X1 Xi_2i-2 [(y|,|) (Y|,|+2) ] X i

+ VYii+2Yi +2,i+2} ,
(A.4.15)

then from (A.4.3)

. Pmyi 118
Xi.j = §ji+2 {[b2m+i1(a§m+i2 - 81272) + aﬂ n;?iﬂ — & bmyi18omyi } . (A.4.16)
m-+i

Using the definitions o0&, andby, prior to (A.4.1),

b2 i1 (Ao — a2 ,) + = @m+DHCm+i+D =a5,;, (A4.17)

and substituting into (A.4.16),

. Brmi 18
Xij = &ji+2 <a§m+i m4:+1l — & bm+i+13-2m+i) =0. (A.4.18)
m-+1

The proof for the subcase <2 proceeds in a similar manner using_,=
[ — 2@ — D]Y?=0.

This completes the proof of (A.4.4) and the fact that the four-term recurrence relat

corresponds to an orthogonal transform.

A.5. Resource Centers

Cco

a b~ W

SPHEREPACK is available at
http://www.scducaredy/ csy softwarg spherepack (A.5.1)
Netlib routines are available at

http://www.netlib.org/index html (A5.2)
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