
Journal of Computational Physics159,213–230 (2000)

doi:10.1006/jcph.2000.6431, available online at http://www.idealibrary.com on

Generalized Discrete Spherical
Harmonic Transforms

Paul N. Swarztrauber1 and William F. Spotz2

National Center for Atmospheric Research (sponsored by the National Science Foundation),
Boulder, Colorado 80307

Received April 15, 1999; revised November 18, 1999

Two generalizations of the spherical harmonic transforms are provided. First, they
are generalized to an arbitrary distribution of latitudinal pointsθi . This unifies trans-
forms for Gaussian and equally spaced distributions and provides transforms for
other distributions commonly used to model geophysical phenomena. The discrete
associated Legendre functions̄Pm

n (θi ) are shown to be orthogonal, to within roundoff
error, with respect to a weighted inner product, thus providing the forward transform
to spectral space. Second, the representation of the transforms is also generalized to
rotations of the discrete basis setP̄m

n (θi ). A discrete function basis is defined that
provides an alternative tōPm

n (θi ). On a grid withN latitudes, the new basis requires
O(N2) memory compared to the usualO(N3). The resulting transforms differ in
spectral space but provide identical results for certain applications. For example,
a forward transform followed immediately by a backward transform projects the
original discrete function in a manner identical to the existing transforms. Namely,
they both project the original function onto the same smooth least squares approx-
imation without the high frequencies induced by the closeness of the points in the
neighborhood of the poles. Finally, a faster projection is developed based on the new
transforms. c© 2000 Academic Press

1. INTRODUCTION

Harmonic transforms are used on the sphere in the same way that Fourier transforms
are used on a rectangle in Cartesian coordinates. On the rectangle, Fourier transforms
are used in both thex and y directions. On the sphere, however, Fourier transforms are
used in the longitudinal direction, while Legendre transforms are used in the latitudinal
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direction. On a grid withN latitudinal points and at least 2N − 2 longitudinal points, the
complete set of spectral coefficients are computed by 2N − 2 discrete forward Legendre
transforms, each corresponding to a rectangular matrix withN −m rows andN columns,
wherem= 0, . . . , N − 1 are the longitudinal wave numbers. With the exception ofm= 0
andN − 1, two transforms are required for eachm.

Except where noted, it is assumed that a complete set of spectral coefficients is computed,
which is often called the “linear grid.” Computational economies are evident for truncations
that require less than a complete set. The backward transform, from spectral to Fourier space,
also consists of 2N − 2 matrices but withN rows andN −m columns. The forward and
backward transforms between spectral and Fourier space are called the Legendre analysis
and synthesis, respectively. The combined transforms, namely, a forward plus a backward
transform, define a projection operator more commonly referred to as the “filter” [5, 11].

The Legendre transforms are not one-to-one because the number of spectral coefficients
is about half the number of points on the sphere and consequently, unlike the Fourier
transform on a rectangle, a forward followed by a backward transform (projection) does not
necessarily reconstruct the original data. Although initially somewhat disconcerting, this
property of the combined transforms has been found to be quite useful for time-dependent
models of geophysical processes. In particular, a weighted least-squares approximation to
the original data is obtained [9] that removes the high frequencies and the resulting time
step restriction that are induced by the closeness of the points in the neighborhood of the
poles. Projecting the dependent variables in this manner permits the use of a larger time
step based on the spacing of the equatorial grid points [5, 7].

This approach also requires fewer harmonic transforms since additional harmonic trans-
forms are not needed to evaluate spatial derivatives. Rather, the derivatives can be evaluated
using fast methods based on double Fourier series with model results that are identical to the
traditional spherical harmonic spectral method [7]. Or, if spectral accuracy can be relaxed
somewhat, the derivatives can be computed by yet faster methods based on high-order finite
differences. Although the projection approach provides increased speed, the time required
by the projection itself remainsO(N3) and has therefore become the focus of efforts to
further speed the computations. A guide to the pseudospectral method itself is given in [3],
which includes an application to numerical weather prediction.

The literature contains fast projection methods based on the multipole method [2, 5, 11].
Although these methods have the potential to beO(N2 log N), in practice they perform like
efficientO(N3)methods, at least for current and expected values ofN [8]. Here we proceed
in the latter direction with the development of a fasterO(N3) projection that can halve the
number of computations for the Legendre transforms. This variant is also memory-efficient
with anO(N2)memory requirement, compared to the existingO(N3) requirement. The goal
of an O(N2 log N) harmonic spectral method remains elusive; however, the “projection”
method provides a new avenue of research. Perhaps the development of a fast projection
will prove to be easier than the development of a fast harmonic transform.

The Legendre transforms consist ofN matrices, which, as currently posed, require mem-
ory proportional toN3. This can be viewed as excessive when compared to theO(N2)

memory requirement of a discrete function on an equiangular grid. Therefore, often the
choice is to compute the elements of these matrices at run time rather than precompute and
store for repeated use later. This seems reasonable since the induced computational over-
head is about 25%, which may be tolerated in exchange for the sizeable memory reduction.
Interestingly, accuracy is not necessarily reduced by this choice. From an accuracy point
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of view it would seem preferable to precompute the transform matrices in 64-bit precision
and store them in full 32-bit precision for subsequent use. However, current methods for
computing these matrices at run time are extremely accurate [10]. Nevertheless, if pre-
computation is preferred, the reducedO(N2) memory requirement further motivates this
approach.

The harmonic transforms are generalized to arbitraryθi in Section 2. This unifies the
harmonic transforms for Gaussian and equally spaced grids. It also provides new transforms
for other common distributions such as equally spaced without pole points, which is close
to a Guassian distribution, or a shifted equally spaced latitudinal grid that also excludes the
pole points. Indeed, the work formally extends to an arbitrary latitudinal distribution but
with grid-specific considerations that are discussed in Appendix A.2. The resulting discrete
associated Legendre functions are shown to be orthogonal with respect to a weighted inner
product, which thereby provides the forward transform into spectral space.

A variant of the Legendre transforms based on functionsQ0
n(θ) and Q1

n(θ) that are
linear combinations (rotations) of the associated Legendre functionsP̄m

n (θ) is developed in
Section 3. The resulting Legendre-type transforms differ in spectral space but are identical
in physical space, where they give the same results as the usual Legendre transforms. For
example, a projection based on theQ functions gives the same results (to roundoff) as one
based on theP̄m

n (θ). The advantage of the former is a significant reduction in memory
from O(N3) to O(N2). If used to approximate the derivatives of a discrete function on
the sphere, this approach will give the same results as the traditional approach and may be
preferable for certain applications where the spectral coefficients can be made invisible to
the user.

A faster projection that can reduce the computation required by the Legendre transforms
by as much as 50% is developed in Section 4. This would at first seem obvious by sim-
ply combining the forward and backward matrices. However, because these matrices are
rectangular, such a combination form> N/2 would actually increase the amount of compu-
tation. We take an alternate approach in which the projection is represented in terms of the
orthogonal complement of the discrete Legendre functions, which becomes the preferred
approach form< N/2.

The accuracy of projections based on the traditional and generalized harmonic trans-
forms is compared in Section 5. Both traditional and generalized harmonic transforms
are developed for five latitudinal point distributions. Traditional projections are com-
pared to projections based onO(N2) representations of the generalized discrete Legendre
transforms and their orthogonal complements. A summary of results is given in Section 6.
Computational methods, theorem proofs, and relevant formulae are provided in the
Appendix.

2. GENERALIZED DISCRETE HARMONIC TRANSFORMS

Given the discrete functionfi, j , defined at latitudesθi , i = 1, . . . , N, and longitudes
θ j , j = 1, . . . ,2N− 2, the forward harmonic transform or harmonic analysis consists of
determining coefficientsam,n andbm,n such thatfi, j can be synthesized by

fi, j =
N−1∑
n=0

n∑
m=0

P̄m
n (θi )(am,n cosmφ j + bm,n sinmφ j ). (2.1)
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The analysis consists of two phases. First we use the fast Fourier transform (FFT) to compute

am(θi ) = 1

2N − 2

2N−2∑
j=1

fi, j cosmφ j and bm(θi ) = 1

2N − 2

2N−2∑
j=1

fi, j sinmφ j . (2.2)

If the θi are Gaussian distributed then the desired coefficients are given in the second phase
by

am,n =
N∑

i=1

wi am(θi )P̄
m
n (θi ) and bm,n =

N∑
i=1

wi bm(θi )P̄
m
n (θi ), (2.3)

where thewi are the Gaussian weights. Once theam,n andbm,n are determined, the harmonic
synthesis or backward transform is given by (2.1). Here we focus on the computationally
intensive transforms (2.3) between Fourier and harmonic spaces because the Fourier trans-
forms (2.2) are fast and not relevant to the work presented here.

As mentioned in the Introduction, the forward harmonic transform followed immediately
by a backward transform will not, in general, reconstruct the discrete function but rather
will provide a least-squares approximation tofi, j that is quite useful, for the reasons stated
earlier. We begin with a study of this combination, called the Legendre projection, that
will later yield the generalized harmonic transforms, which include both Gauss and equally
spaced grids as well as other common grids used in computational geophysics. Indeed, the
work generalizes to any latitudinal distribution with considerations that are grid-specific
and discussed later.

The projection occurs in the Legendre transforms between Fourier and harmonic space.
The computation of botham,n andbm,n in (2.3) is by application of the matrix operatorPT

mW,
whereW is anN× N diagonal matrix of Gaussian weightswi andPm is theN× (N−m)
matrix

Pm =


P̄m

m(θ1) · · · P̄m
N−1(θ1)

...
...

P̄m
m(θN) · · · P̄m

N−1(θN)

 , (2.4)

whose entries̄Pm
n (θi ) are tabulations of the normalized associated Legendre functions

P̄m
n (θ) =

1

2nn!

[
2n+ 1

2

(n−m)!

(n+m)!

]1/2

cosm θ
dn+m

dxn+m
(x2− 1)n; x = sinθ. (2.5)

The Legendre projection combines the analysis and synthesis,

Fm = PmPT
mW, (2.6)

into a single N× N matrix for each longitudinal wave numberm. The discrete
Legendre functions are orthogonal with respect to Gaussian quadrature. That is,PT

mW Pm =
I N−m×N−m. Then, because a matrix commutes with its inverse,P0PT

0 W = I N×N and there-
fore

WN×N =
(
P0PT

0

)−1
, (2.7)
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and, from (2.6),F0 = I N×N . For exposition the dimensions of a matrix may be included
with its definition.

Unless otherwise noted, weighted orthogonality is assumed throughout.W defines a
weighted inner product(u, v)W = (uTWv) that is fundamental to the generalized harmonic
transforms presented here. Of course it is possible to select a distribution of points that yields
a singular or near-singular matrix on the right side of (2.7). The management of this potential
problem is discussed in Appendix A.2.

Consider now the elements ofP0PT
0 but for an arbitrary distribution of latitudesθi ,

(
P0PT

0

)
i, j =

N−1∑
k=0

P̄0
k(θi )P̄

0
k(θ j ). (2.8)

A simple proof of the Christoffel–Darboux formula is given in Appendix A.3, which pro-
vides the following alternate representation of the elements:

(
P0PT

0

)
i, j
= N√

4N2− 1

P̄0
N(θi )P̄0

N−1(θ j )− P̄0
N−1(θi )P̄0

N(θ j )

sinθi − sinθ j
. (2.9)

The diagonal elements can be computed either from (2.8) or by applying l’Hˆopital’s rule to
(2.9). Using the latter approach,

(
P0PT

0

)
i,i
= N√

4N2− 1 cosθi

[
P̄0

N−1(θi )
d

dθ
P̄0

N(θi )− P̄0
N(θi )

d

dθ
P̄0

N−1(θi )

]
. (2.10)

From (2.9) we are motivated to selectθi as the zeros of̄P0
N(θi ) because the resulting matrix

is then diagonal. The resultingθi are known as the Gaussian distribution and(W)i,i are the
Gaussian weights obtained from (2.10) as

(W)i,i =
√

4N2− 1 cosθi

/
N P̄0

N−1(θi )
d

dθ
P̄0

N(θi ). (2.11)

The Gaussian pointsθi can be computed accurately and efficiently as the eigenvalues of a
symmetric tridiagonal matrix as described in [10]. The weights can be computed from (2.8)
or (2.9) or by a third method also described in [10] and implemented in subroutinegaqd in
SPHEREPACK [1], at (A.5.1).SPHEREPACK contains programs for the harmonic transforms
on Gaussian and equally spaced grids as well as a number of other harmonic transforms
and related computations that can assist model development.

Although the spherical harmonics are not polynomials for oddm, the product of two
such harmonics is a polynomial for which Gauss quadrature is exact. Therefore, for all
m≤ N − 1 the spherical harmonicsPm are weighted orthogonal with respect to the Gauss
weights. However, unlike the Gaussian distribution, other distributions require two weight
matrices, namely,W0 = (P0PT

0 )
−1 andW1 = (P̃1P̃T

1 )
−1, for m even and odd, respectively.

The tilde notation is used becauseP1 must be augmented to an independent set ofN vectors
before inversion is possible. Indeed, for an arbitrary distribution,P0 may also be singular
as discussed in Appendix A.2.

THEOREM1. LetPm be the N× (N−m)matrix defined by(2.4) and letWl (l = 0, 1) be
the N× N matrices defined in the paragraph preceeding Theorem 1; then for all0<m<
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N− 1 and any distributionθi such that the corresponding weight matricesW0 and W1

exist, the associated Legendre functionsPm are weighted orthogonal. That is,

PT
mWl Pm = I (N−m)×(N−m) l =

{
0, m even
1, m odd.

(2.12)

Most of the proof is in Appendix A.4, where it is shown that the four-point recurrence
for the associated Legendre functions corresponds to an orthogonal transform. That is,
Pm+1=Pm−1Bm, whereBm = (X−1

m Ym)
T is (N − m+ 1) × (N − m− 1) andBT

mBm =
I (N−m−1)×(N−m−1). Xm and Ym are defined in Appendix A.4 at (A.4.3). LetMm be the
N × (N −m) matrix Bl+1Bl+3 · · ·Bm−1. ThenM T

mMm = I (N−m)×(N−m) andPm = Pl Mm.
Theorem 1 follows because, by construction,Pl is weighted orthogonal with respect toWl .

The forward transform to spectral space, or the Legendre analysis, is then immediately
evident as

ZT
m = PT

mWl , (2.13)

wherel is 0 (1) if m is even (odd). The backward transform or Legendre synthesis is simply
Pm. Like (2.6), the projection combines the two and from (2.12)

F2
m = Fm, (2.14)

which demonstrates thatFm is a projection operator onto the discrete associated Legendre
functionsPm. This result is the key to the stability of the spectral transform method and
remains an attribute of the generalized projections that are developed here.

For arbitraryθi , Wl is not diagonal; however, when it is combined withPT
m as in (2.13),

the compute time for the forward transform is the same as that required for a Gaussian
distribution of points. For equally spacedθi , the resulting Legendre analysis is identical to
that given in [6, 9].

If the matrices are stored, the harmonic transforms require double the memory required by
transforms on a Gaussian grid, because bothPm andZm must be stored. However, if they are
computed at run time, the memory requirements for both the Gaussian and equally spaced
grids areO(N2) rather thanO(N3). This is often the preferred approach since the elements
in both matrices can be computed efficiently with three multiplications and two additions,
as described in Appendix A.4 and implemented inSPHEREPACK (A.5.1). However, this
computation can be eliminated, while at the same time retainingO(N2) storage, by using
a variant of the Legendre transforms that is developed in the next section.

3. A VARIANT OF THE LEGENDRE TRANSFORMS WITH O(N2) REPRESENTATION

We begin with the construction of the orthogonal complement ofPT
mW. That is, for each

mwe will determinemorthogonal vectorsq such thatPT
mWq= 0. The memory requirement

for the complete set isO(N2) compared withO(N3) for Pm. In what follows, a discrete
function will be called an even (odd) vector if it is even (odd) about the equator(θ = 0).
For a distribution of latitudinal points that is symmetric about the equator, the even (odd)
classification can be used to halve the computational time as demonstrated below. The
development will be presented by example for the caseN= 8 with multiple references to
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TABLE I

Bases for the Orthogonal Complement of PTmW on an

Eight-Point Latitudinal Distribution

p0
0 p0

1 p0
2 p0

3 p0
4 p0

5 p0
6 p0

7

q1
0 p1

1 p1
2 p1

3 p1
4 p1

5 p1
6 p1

7

q0
0 q0

1 p2
2 p2

3 p2
4 p2

5 p2
6 p2

7

q1
0 q1

1 q1
2 p3

3 p3
4 p3

5 p3
6 p3

7

q0
0 q0

1 q0
2 q0

3 p4
4 p4

5 p4
6 p4

7

q1
0 q1

1 q1
2 q1

3 q1
4 p5

5 p5
6 p5

7

q0
0 q0

1 q0
2 q0

3 q0
4 q0

5 p6
6 p6

7

q1
0 q1

1 q1
2 q1

3 q1
4 q1

5 q1
6 p7

7

Table I. The orthogonal complement is spanned by the discrete functionsq0
n andq1

n in the
last two rows of Table I. They are computed in the following sequence using the Gram–
Schmidt orthogonalization with respect to the weighted inner product(u, v)W . The vectors
pm

n are the discrete Legendre functions or the columns ofPm defined in (2.4).

1. In the second row of Table I,q1
0 is uniquely determined as an odd vector that is

orthogonal top1
2, p1

4, andp1
6. It is implicitly orthogonal to the remainingp1

n for n= 1, 3, 5,
and 7 because they are even vectors. It is also orthogonal to the remainingpm

n in Table I with
oddm because they are linear combinations ofp1

n as discussed in Appendix A.4. Therefore
q1

0 can also be selected as a member of the orthogonal complement toPT
mW for m= 3, 5,

and 7, where it appears in the corresponding rows of the first column in Table I.
2. In the third row,q0

0 is computed as orthogonal top2
n for n= 2, 4, and 6. Alsoq0

1 is
computed as orthogonal top2

n for n= 3, 5, and 7. For the reason stated in 1 above, both
are also orthogonal to the remainingpm

n for m= 4 and 6 where they appear in the first two
columns of Table I.

3. This process continues down Table I with two new vectors being added to each row.
For example, in the fifth row the vectorsq0

2 andq0
3 are added but with the requirement that

they are orthogonal to all other vectors in the row with the same parity. Therefore,q0
2 must

be computed not only as orthogonal top4
4 andp4

6 but also as orthogonal toq0
0.

This completes the construction of the orthogonal complement, from which a variant to
the Legendre functions can be developed that requires onlyO(N2)memory. The variant is
determined from the last two rows in Table I, which provide both the analysis and synthesis
as presented in the following two theorems.

First defineq0
6= p6

6, q
0
7= p6

7, andq1
7= p1

7. Next assume generalN and define the fol-
lowing matrices that are formed from vectors in the last two rows of Table I,

Ql
m =

[
ql

m · · · ql
N−1

]
N×(N−m)

, (3.1)

wherel = 0 (1) if m is even (odd).

THEOREM 2. There exists an(N−m)× (N−m) l2 orthonormal matrixHl
m such that

the Legendre synthesisPm in (2.4) is given byPm=Ql
mHl

m.

The proof, together with the definition ofHl
m, is given in Appendix A.1.

Because(Hl
m)

THl
m= I (N−m)×(N−m) we have the corollary thatQl

m=Pm(Hl
m)

T and there-
fore we can now interpret the discrete functionsql

n as continuously differentiable functions



220 SWARZTRAUBER AND SPOTZ

Ql
n(θ). Like the associated Legendre functions, theQl

n(θ) can be differentiated, integrated,
or interpolated in any manner that may be required by an application.

Next letr l
n be the rows of(Ql

0)
−1 and define the lastN −m rows by

Rl
m =

[
r l

m · · · r l
N−1

]
N×(N−m)

. (3.2)

THEOREM3. The Legendre analysis(2.13) is given by(Zl
m)

T = (Hl
m)

T (Rl
m)

T .

The proof, together with the definition ofHl
m, is given in Appendix A.1. For allm, Hl

m

requiresO(N3)memory; however, it may not be relevant for applications that do not require
explicit calculation of the spectral coefficients. For example, the projectionFm in (2.6),
which consists of an analysis followed immediately by a synthesis, has a representation as
the O(N2) projection

Fm = Ql
m

(
Rl

m

)T
, (3.3)

whereQl
m andRl

m are bothN × (N − m) matrices given by (3.1) and (3.2) respectively.
Althoughm ranges from 0 toN − 1, they require only 2N2 locations because they are all
generated fromQl

l andRl
l , l = 0, 1, by deletingm columns. BothQl

m andRl
m require 2N2

locations and hence the projection as well as the Legendre type transforms require 4N2

locations. This can be halved taking advantage of symmetries.
Next suppose we wish to approximate theθ derivative of a discrete function defined on

the surface of the sphere. The traditional approach is to first analyze and then synthesize
but with Pm replaced by its derivativėPm. By combining Theorems 2 and 3 and replacing
Ql

m with Q̇l
m we determine that an approximate latitudinal derivative can be obtained by

the application ofQ̇l
m(R

l
m)

T . Like the projection, this computation is independent ofHl
m.

Q̇l
m can be precomputed and stored in 2N2 locations for subsequent use.

4. A FASTER PROJECTION

In Section 2 we observed thatF0= I N×N , which considerably facilitates its application
for m= 0. However, form> 0, Fm is a full N× N matrix that does not admit an obvious
computational saving. However, the rank ofFm is N−m, and hence the rank of its orthogonal
complement ism, which can be used to speed its computation form< N/2. We proceed
now to develop an alternate form ofFm.

THEOREM4. The projectionFm has the alternate formFm= I N× N −Gm, whereGm is
equal to the product of the first m columns ofQl

0 times the first m rows ofRl
0.

First define the orthogonal complement ofQm andRm as

Q̄l
m =

[
ql

0 · · · ql
m−1

]
N×m

and R̄l
m =

[
r l

0 · · · r l
m−1

]
N×m

. (4.1)

Then, from (3.2), (3.3), and by inspection

I N×N = F0 = Ql
0

(
Rl

0

)T = Ql
m

(
Rl

m

)T + Q̄l
m

(
R̄l

m

)T
, (4.2)

or

Fm = I −Gm, (4.3)

whereGm = Q̄l
m(R̄

l
m)

T , which completes the proof.
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This provides an alternate way of applying the projectionFm; namely, in terms of its
orthogonal complement. For example, consider the casem= 1, for whichF1 is the product
of Q1 andRT

1 , which are almost full matrices. However,G1 is the outer product of the vectors
q1

0 andr1
0. Assume the latter is precomputed, then for arbitraryx, (I −G1)x requires 2N

flops compared to 2N2 flops for computingF1 x. The alternate(I −Gm)x is more efficient
for m< N/2 andFmx is preferred form≥ N/2. This alternate approach is also slightly
more accurate, which can be determined by comparing Tables II and III in the next section.

This alternative provides a computational savings of 50% if all harmonics are included
in the projection. The savings is less when fewer harmonics are included. For example, if
two-thirds of the harmonics are included, then the dimension of the orthogonal complement
increases with crossover at atm= N/6. The overall savings when using the two-thirds rule
is about 12.5%. The two-thirds rule can be implemented either by truncating the discrete
functions inPm or by enlarging its orthogonal complement—as an example of the latter, by
including the vectors in the last two columns of Table I.

5. COMPUTATIONAL EXPERIMENTS

The developments of the previous sections have been implemented in a single program,
which accepts any latitudinal distributionθi and computes (a) the weight matricesWl as
described in Appendix A.3, (b) the orthogonal complementQl

m, (c) the weight matrix (A.1.9)
in terms of the memory efficient alternative Legendre functionsql

n, and (d) projections based
on both the traditional Legendre functionspm

n and alternativesql
n. The accuracy of these

projections is listed in Tables II and III for five different latitudinal distributions.
Table II contains the maximum error of the projection based on the application ofPmPT

mW
to 20 random vectors. The implementation is sequential with the vector being first multiplied
by them× N analysis matrixPT

mW followed by theN×msynthesis matrixPm. Accuracy is
computed as the maximum difference between the calculations in 32- and 64-bit precision.

Table III contains the accuracy of the same projection based on the memory-efficient
alternatives to the discrete Legendre functions and their orthogonal complements. That
is, for m≤ N/2, the projection is computed from (4.3), and form> N/2, the projection
is computed from (3.3). In all cases the elements of the matrices are computed in 64-bit
precision but stored in 32-bit precision before application to the same random vectors used
in Table II. The accuracy of the alternate approach, as given in Table III is computed as its
maximum difference from the traditional approach in 64-bit precision. The accuracy of the
alternate approach appears slightly better.

TABLE II

Error in Computing the Legendre Projection Based on Traditional Legendre

Functions pm
n for Five Different N-Point Latitudinal Distributions

Distribution N= 32 N= 64 N= 128

Equally spaced with poles 6.56× 10−7 8.34× 10−7 2.00× 10−6

Equally spaced without poles 6.56× 10−7 8.34× 10−7 1.31× 10−6

Shifted equally spaced 5.66× 10−7 1.07× 10−6 1.31× 10−6

Gauss distributed 4.77× 10−7 5.96× 10−7 1.54× 10−6

Random distribution 8.34× 10−7 1.25× 10−6 1.88× 10−6
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TABLE III

Error in Computing the Legendre Projection Based on the Alternative Legendre

Functions q0
n and q1

n for Five Different N-Point Latitudinal Distributions

Distribution N= 32 N= 64 N= 128

Equally spaced with poles 3.57× 10−7 4.77× 10−7 6.56× 10−7

Equally spaced without poles 3.58× 10−7 6.56× 10−7 1.01× 10−6

Shifted equally spaced 3.87× 10−7 5.36× 10−7 7.15× 10−7

Gauss distributed 2.98× 10−7 5.07× 10−7 7.15× 10−7

Random distribution 3.57× 10−7 5.36× 10−7 7.74× 10−7

For each point distribution, a discrete harmonic analysis and synthesis were determined
with characteristics identical to the traditional Gaussian or equally spaced transforms. That
is, in each case the discrete functionspm

n orql
n were orthonormal under the computed weight

function andFm defined a projection operator to machine roundoff error. The five different
latitudinal distributions are listed below.

1. An equally spaced distribution of points that includes the pole points. That is,θi =
π/2− (i − 1)π/(N − 1), for i = 1, . . . , N. The resulting transforms are identical to the
existing transforms in [6, 9].

2. An equally spaced distribution of points, like that given above but excluding the pole
points. That is,θi = π/2− iπ/(N + 1), for i = 1, . . . , N. This distribution is close to the
Gaussian distribution in 4 below.

3. A shifted equally spaced distribution like 1 above but with the first and last points at
a distanceπ/(2N) from the poles. That is,θi = π/2− (i − .5)π/N, for i = 1, . . . , N. The
pole points are not included.

4. A Gauss distribution ofN points. The resulting transforms are identical to the tradi-
tional transforms based on Gaussian quadrature.

5. Like 1 above, but with a 10% random perturbation of the nonpole points. Here we
are not able to take advantage of the parity of the vector functions, which doubles the time
required to compute the orthogonal complementql

n.

6. SUMMARY

Here we first summarize the results of the preceding sections

1. The Legendre transforms are generalized to an arbitrary latitudinal distribution of
points, thereby unifying the transforms based on Gauss and equally spaced distribution as
well as providing new transforms for other grid distributions used to model geophysical pro-
cesses. The resulting discrete Legendre functions are orthogonal with respect to a weighted
inner product and define projection operators.

2. Memory efficient alternative Legendre transforms are developed whose coefficients in
spectral space are rotations of the traditional spectral coefficients. These transforms require
O(N2) memory compared to the traditionalO(N3) requirement. They provide identical re-
sults for computations that do not require the explicit computation of the traditional spectral
coefficients. Examples include the computation of the Legendre projection or latitudinal
derivatives.
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3. The Legendre projection consists of a forward transform followed immediately by
a backward transform and therefore the spectral coefficients are not explicitly required.
A faster projection is developed based on the alternative Legendre transforms and their
orthogonal complement. A computational savings of up to 50% can be realized.

4. The accuracy of projections based on the traditional and alternative discrete Legendre
functions are compared in Tables II and III. The projections based on the memory-efficient
alternative to the Legendre transforms are slightly more accurate than the traditional projec-
tion. Therefore, like the traditional projection, the alternate projection projects any discrete
function onto a smooth least-squares approximation in a manner identical to the existing
harmonic projection.

In [7] it was shown that the stability and accuracy of the spectral transform method was
determined by the implicit application of the harmonic projection. That is, it was determined
that spectral transform accuracy and stability can be obtained by projecting the dependent
variables only and using (say) double Fourier series to compute spatial derivatives. This
resulted in a computational savings, since fewer Legendre transforms are required. It also
focused attention on the projection as the most computation-intensive part of the model
dynamics and therefore as having a significant potential to provide additional savings. Here
that potential has been realized by doubling its speed, which makes the cost of the projection
comparable to that of a single Legendre transform. In turn, this further increases the speed of
the projection method to between double and triple that of the traditional spectral transform
method, while at the same time reducing the memory requirement fromO(N3) to O(N2).

APPENDIX

Proofs, Formulae, and Computational Methods

A.1. Proofs of Theorems 2 and 3 in Section 3

In this section we prove Theorems 2 and 3 in Section 3 that provide a memory efficient
alternative to the traditional Legendre transforms. In particular we derive an orthonormal
matrixHm that rotates the coefficients in spectral space in such a way that both the resulting
analysis and synthesis have anO(N2) representation. Alternatively, we define a variant of
the Legendre analysis, withO(N2) representation, that computes spectral coefficients that
are a rotation of the coefficients determined by the usual Legendre analysis. The resulting
transforms differ in spectral space but are identical in physical space and may therefore be
attractive for many applications, including weather and climate modeling, where spectral
space can be made invisible to the user. The presentation is by example; forN= 8, it will
be shown that all of the Legendre transforms and projections can be expressed in terms of
the last two rows in Table I.

We begin by demonstrating thatP4, as defined in (2.4) and (3.1), is a rotation of

Q0
4 =

[
q0

4 q0
5 p6

6 p6
7

]
8×4, (A.1.1)

which is located in the next to last row of Table I. To this end we define the matrix

D = [Q̄0
4 Q0

4

]
8×8, (A.1.2)

whereQ̄0
4 is defined in (4.1). ThereforeD corresponds to the matrix with columns defined
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by the next to last row of Table I. BecauseD is weighted orthogonal,

I8×8 = DTW0D =W0DDT = DDTW0. (A.1.3)

Then, by inspection,

I8×8 = Q̄0
4

(
Q̄0

4

)T
W0+Q0

4

(
Q0

4

)T
W0. (A.1.4)

A similar development for the fifth row of Table 1 yields

I8×8 = Q̄0
4

(
Q̄0

4

)T
W0+ P0

4

(
P0

4

)T
W0. (A.1.5)

Subtracting (A.1.5) from (A.1.4), we obtain

Q0
4

(
Q0

4

)T
W0 = P4PT

4 W0. (A.1.6)

Recalling that the columns of bothQ0
4 andP4 are orthogonal with respect toW0, we obtain

P4 = Q0
4H0

4 and Q0
4 = P4

(
H0

4

)T
, (A.1.7)

whereH0
4= (Q0

4)
TW0P4 is l2 orthogonal, i.e.,(H0

4)
TH0

4= I4×4. ThereforeP4 can be re-
presented as a rotation of the last four discrete functions in the next to last row of
Table I.

The generalization is now clear; for evenm, Pm can be represented as a rotation of the
N−m discrete functionsq0

n, n=m, . . . , N. For oddm,Pm can be represented as a rotation
of theN−m discrete functionsq1

n, n=m, . . . , N in the last row of Table I. IfN is odd the
last two rows must be switched. In general,

Pm = Ql
mHl

m where Hl
m =

(
Ql

m

)T
Wl Pm, (A.1.8)

wherel is 0 or 1 ifm is even or odd, respectively.Wl can also be expressed in terms of the
discrete functionsql

n. From (2.7) and (A.1.8),

Wl =
[
Ql

0

(
Ql

0

)T
]−1

N×N
, (A.1.9)

where for evenN

Q0
0 =

[
q0

0 q0
1 · · ·q0

N−3 pN−2
N−2 pN−2

N−1

]
(A.1.10)

Q1
0 =

[
q1

0 q1
1 · · ·q1

N−3 q1
N−2 pN−1

N−1

]
(A.1.11)

and for oddN

Q0
0 =

[
q0

0 q0
1 · · ·q0

N−3 q0
N−2 pN−1

N−1

]
(A.1.12)

Q1
0 =

[
q1

0 q1
1 · · ·q1

N−3 pN−2
N−2 pN−2

N−1

]
. (A.1.13)
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This completes the proof of Theorem 2. Consider now the following proof of Theorem 3
beginning with theO(N2) representations of the Legendre transforms. From (2.13), (A.1.8),
and (A.1.9) the traditional forward transform or Legendre analysis is given by

(
Zl

m

)T = PT
mWl =

(
Hl

m

)T(
Ql

m

)T
[(

Ql
0

)T
]−1(

Ql
0

)−1
(A.1.14)

or (
Zl

m

)T = (Hl
m

)T
[O I ](N−m)×N

(
Ql

0

)−1
, (A.1.15)

whereO is an (N−m)× (N−m) matrix with zero entries. Then, recalling Definition (3.2),
we obtain the desired result,

ZT
m =

(
Hl

m

)T(
Rl

m

)T
, (A.1.16)

which completes the proof of Theorem 3.

A.2. Computing the Weight Matrix W

The weight matrixW in (2.7) is diagonal for a Gaussian distribution defined as the
zeros ofP̄m

N(θi )= 0. From (A.3.1) this implies thatxi = sinθi must be an eigenvalue of the
symmetric tridiagonal matrix [αm

n , 0, α
m
n+1], n=m, . . . , N− 1. Then, given the Gaussian

pointsθi , the weights can be computed directly from (2.7) or (2.11) or by a third method
described in [10] and implemented in subroutinegaqd in SPHEREPACK, which is available
directly on the World Wide Web. Programs are also included for transforms on an equally
spaced grid.

For equally spacedθi (including the poles) two weight matrices are required; namely,
W0 for evenm andW1 for oddm. W−1

0 =P0PT
0 has full rank. First compute thePT

0 =QR
decomposition whereQ is orthogonal andR is upper triangular. ThenW0= (RT )−1R−1.
TheQR decomposition can be computed usingEISPACK, available from Netlib. However,
W−1

1 =P1PT
1 has rankN− 2 becausep1

N−1 is linearly dependent on the remainingpm
n . First

definep̃1
n with lengthN− 2 asp1

n but without its first and last zero components. Then define
P̃1= [p̃1

1 · · · p̃1
N−2]. ThenW1= (P̃1P̃T

1 )
−1. In this mannerW1 is defined on the latitudinal

grid minus the points at the pole. It can be extended to the poles by giving each the weight
of 1.

For the general distribution of latitudinal points, the “extent” of the linear independence
of thepl

n (l = 0, 1) is unknown. ConsequentlyWl = (Pl PT
l )
−1 may not exist, as was the case

for W1 above. The goal here is to determine the number of independentpl
n and the extent

to which they are independent so that an informed decision can be made about the number
of pl

n to retain or, when possible, redistributingθi .
To deal effectively with these considerations we choose to use the singular value decom-

position (SVD). The subroutinedsvdc in LINPACK is available from Netlib and provides
matricesU, S, andV such that

Pl = UN×(N−l )S(N−l )×(N−l )VT
(N−l )×(N−l ), (A.2.1)

whereUTU= I (N−l )×(N−l ), VTV= I (N−l )×(N−l ), andS is a diagonal matrix with positive or
zero singular valuessi,i .
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At this point, the number of strongly independentpl
n (sayN ′) can be determined by the

number of largest singular values. This is somewhat subjective but usually easy to determine
because the singular values will generally attenuate smoothly until a sudden drop-off.N ′

can then be chosen to include only the larger singular values. Where optional,N ′ may be
increased by moving or adding latitudinal points.

Next defineP′l = [Pl
0 · · · Pl

N ′−1] and compute its singular value decomposition,

P′l = U′N×N ′S
′
N ′×N ′V

′T
N ′×N ′ . (A.2.2)

Now expandU′ to a squarel2 orthonormal matrix̃Ul by adding vectors using Gram–Schmidt
orthogonalization. Also change zero singular values tosi = 1. Finally, theN× N weight
matrices are given by

Wl = Ũl S−2(Ũl )
T . (A.2.3)

The resulting weight matrices are nonsingular and therefore define a weighted norm‖u‖2Wl
=

uTWl u. Also, from (A.2.2) and (A.2.3), it can be verified thatP′Tl Wl P′l = I (N ′−l )×(N ′−l ).
We close this appendix with the following observation. IfP=USVT then the weight

matrix isW=US−2UT , which can be quite ill conditioned. However, the analysis matrix
Z=VS−1UT is better conditioned and the condition of the projection matrixF=UUT

is best possible and independent of the condition of eitherP or W. Therefore, in theory,
the projection may be well conditioned even if the weight and analysis matrices are ill-
conditioned. Although it may be possible to formulate the harmonic projection in these
terms, it is not clear at the time of this writing whether theO(N2) memory requirement
can be retained. Furthermore, a reformulation may not be necessary because the numerical
experiments in Section 5 demonstrate that theO(N2) formulation is already somewhat
more accurate than the traditional formulation. This topic is the focus of current research.

A.3. The Christoffel–Darboux Formula

Here we follow the proof in Hildebrand [4] with application to the associated Legendre
functions. We begin with the well-known three-term recursion formula,

xP̄m
n = αm

n P̄m
n−1+ αm

n+1P̄m
n+1, where αm

n =
[
(n−m)(n+m)

(2n− 1)(2n+ 1)

]1/2

. (A.3.1)

We wish to determine a closed form of

S(x, y) =
N−1∑
k=m

P̄m
k (x)P̄

m
k (y). (A.3.2)

From (A.3.1),

x S(x, y) =
N−1∑
k=m

[
αm

k P̄m
k−1(x)+ αm

k+1P̄m
k+1(x)

]
P̄m

k (y) (A.3.3)

and

yS(x, y) =
N−1∑
k=m

P̄m
k (x)

[
αm

k P̄m
k−1(y)+ αm

k+1P̄m
k+1(y)

]
. (A.3.4)
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Most of the terms cancel in the difference of (A.3.3) and (A.3.4) and we obtain the desired
result,

(x − y)
N−1∑
k=m

P̄m
k (x)P̄

m
k (y) = αm

N

[
P̄m

N(x)P̄
m
N−1(y)− P̄m

N−1(x)P̄
m
N(y)

]
. (A.3.5)

A.4. Orthogonal Four-Term Recurrence Transform

The discrete functionsq0
n andq1

n that provide the memory-efficient alternative topm
n are

developed in three steps in Section 3, prior to Table I. A key factor in facilitating their devel-
opment is that the setpm+1

n is a linear combination of thepm−1
n . This is provided by the follow-

ing four-term recurrence. If we definean= [n(n+ 1)]1/2 andbn= [(2n+ 3)/(2n− 1)]1/2,
then the normalized version of (5.14) in [10] is

pm+1
n+1 = a−1

n+m+1

(
bnan+m−1pm−1

n−1 − an−m+1pm−1
n+1 + bnan−m−1pm+1

n−1

)
. (A.4.1)

This recurrence relation is also quite stable and provides an accurate method for computing
thepm

n starting withp0
n andp1

n. An accurate method for computing the latter is also given
in [10]. The rows ofZm also satisfy (A.4.1), which is initialized by the rows ofZ0 andZ1,
which can be computed by (2.13) or the formulas in [10]. The recurrence (A.4.1) requires
eight flops for each component; however, if the coefficients are precomputed and stored in
two-dimensional arrays, only five flops are required.

The stability of (A.4.1) results from the orthogonality of the recurrence relation. That is,
the transform frompm−1

n to pm+1
n corresponds to an orthogonal transform. In addition, the

proof of (2.12) in Theorem 1 also depends heavily on its orthogonality, which we proceed
now to prove. Form= 1, . . . , N− 1, Eq. (A.4.1) can be written in matrix form,

Xmpm+1 = Ympm−1 or pm+1 = X−1
m Ympm−1, (A.4.2)

where for arbitraryθ , pm= [ Pm
m (θ) · · · Pm

N−1(θ)]
T . Xm is an(N−m− 1)× (N−m− 1)

matrix with elementsxi, j andYm is an (N−m− 1)× (N−m+ 1) matrix with elements
yi, j , where

xi, j =


a2m+i , j = i

−bm+i−1ai−2, j = i − 2

0, otherwise

and yi, j =


bm+i−1a2m+i−2, j = i

−ai , j = i + 2

0, otherwise.

(A.4.3)

The goal is now to show thatX−1
m Ym is orthogonal or thatI (N−m−1)×(N−m−1)=

X−1
m Ym(X−1

m Ym)
T =X−1

m YmYT
m(X

−1
m )T . Equivalently we will show that

YmYT
m

(
X−1

m

)T = Xm. (A.4.4)

Let X−1
m have elementsξi, j . Because of its simple two-diagonal form (diagonal and

subdiagonal at a distance of 2 from the diagonal) the elements can be given recursively as

ξi, j =


1/xi,i , j = i

−xi,i−2ξi−2, j

xi,i
, j < i, (i, j ) same parity

0, otherwise.

(A.4.5)

X−1
m is a “checkerboard” lower triangular matrix.
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Now defineEm=YmYT
m, which is symmetric pentadiagonal with zero sub- and super-

diagonal. LetEm have elementsei, j ; then

ei, j =


(yi,i )

2+ (yi,i+2)
2, j = i

yi,i+2yi+2,i+2, j = i + 2

yi,i yi−2,i , j = i − 2

0, otherwise.

(A.4.6)

Next defineX̂m=Em(X−1
m )T with elementŝxi, j . By inspection,̂Xm is also a “checkerboard”

matrix with zeros below the subdiagonal located at distance 2 from the diagonal.
To prove (A.4.4),X̂m must be shown to equalXm. To this end we devote the rest of this

section to three separate cases.

First Case: The Subdiagonal.From the definition of̂Xm, (A.4.5), and (A.4.6),

x̂i+2,i = ei+2,i ξi,i = yi+2,i+2yi,i+2/xi,i

= −bm+i+1a2m+i ai+2/a2m+i = −bm+i+1ai+2 = xi+2,i . (A.4.7)

Second Case: The Diagonal.

x̂i,i =
{

ei,i ξi,i , i ≤ 2
ei,i−2ξi,i−2+ ei,i ξi,i i > 2.

(A.4.8)

We prove only the more complicated casei > 2. From (A.4.5), (A.4.6), and (A.4.8),

x̂i,i = 1

xi,i

[
(yi,i )

2+ (yi,i+2)
2− yi,i yi−2,i xi,i−2ξi−2,i−2

]
, (A.4.9)

= 1

xi,i

[
(yi,i )

2+ (yi,i+2)
2− yi,i yi−2,i

xi,i−2

xi−2,i−2

]
, (A.4.10)

then from (A.4.3)

x̂i,i = 1

a2m+i

[
b2

m+i−1

(
a2

2m+i−2− a2
i−2

)+ a2
i

]
. (A.4.11)

Finally, using the definitions ofan andbn prior to (A.4.1)

x̂i,i = (2m+ i )(2m+ i + 1)

a2m+i
= a2

2m+i

a2m+i
= a2m+i = xi,i . (A.4.12)

The proof for the subcasei ≤ 2 proceeds in a similar manner usingai−2=
[(i − 2)(i − 1)]1/2=0.

Third Case: Above the Diagonal.If j > i and have the same parity, then

x̂i, j =
{

ei,i ξ j,i + ei,i+2ξ j,i+2, i ≤ 2

ei,i−2ξ j,i−2+ ei,i ξ j,i ,+ei,i+2ξ j,i+2 i > 2.
(A.4.13)

We again consider only the more complicated case. From the recursive definition (A.4.5),

ξ j,i = xj, j−2

xj, j

x j−2, j−4

xj−2, j−2
· · · xi+2,i

xi+2,i+2

(−1)(i− j )/2

xi,i
. (A.4.14)
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Substituting into (A.4.13)

x̂i, j = ξ j,i+2

{
yi,i yi−2,i

xi+2,i

xi,i

xi,i−2

xi−2,i−2
− [(yi,i )

2+ (yi,i+2)
2
]xi+2,i

xi,i
+ yi,i+2yi+2,i+2

}
,

(A.4.15)

then from (A.4.3)

x̂i, j = ξ j,i+2

{[
b2

m+i−1

(
a2

2m+i−2− a2
i−2

)+ a2
i

]bm+i+1ai

a2m+i
− ai bm+i+1a2m+i

}
. (A.4.16)

Using the definitions ofan andbn prior to (A.4.1),

b2
m+i−1

(
a2

2m+i−2− a2
i−2

)+ a2
i = (2m+ i )(2m+ i + 1) = a2

2m+i , (A.4.17)

and substituting into (A.4.16),

x̂i, j = ξ j,i+2

(
a2

2m+i

bm+i+1ai

a2m+i
− ai bm+i+1a2m+i

)
= 0. (A.4.18)

The proof for the subcasei ≤ 2 proceeds in a similar manner usingai−2=
[(i − 2)(i − 1)]1/2= 0.

This completes the proof of (A.4.4) and the fact that the four-term recurrence relation
corresponds to an orthogonal transform.

A.5. Resource Centers

SPHEREPACK is available at

http://www.scd.ucar.edu/css/software/spherepack (A.5.1)

Netlib routines are available at

http://www.netlib.org/index.html (A.5.2)
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